
D-R14i 77 IMPLEMENTATION OF INTERLISP
ON THE VX(U) UNIVERSITY

OF 1/1
SOUTHERN CRI IFORNIR MARINA DEL REY INFORMATION SCIENCES
INST R L BATES ET AL. MAY 84 ISI/RS-84-i29p UNCLASSIFIED MDR993-8i-C-8335 F/G 9/2 NI

MEu....'

- .. '"..

0'

lii

1.0

2.. .2

1j-6
14-,

11111 1.05 IA

i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS *1b A

%I. I

'S.,
°

.% ,

* *~ 'S~l %i- - * ' i i\- w - : - i :i l ''* .*' %* -

JC*~ V 5 1. . r . '' . o , .o -o .. . , ,, l

r ' JI]1 Reprint Series
, : , 4ISL/RS-84-129

f AD- 141 07 1May 1984

University

of Southern

Raymond L. Bates

David Dyer
Johannes A. G. M. Koomen

Implementation of Interlisp
on the VAX

Reprinted from Conference Record of the 1982
Symposium on LISP and Functional Programming,
Pittsburgh, Pennsylvania, August 1982.

L.

.~UT

'S -
*~U 1.. 04

INFORMATION
SCIENCES' 21"/22-1511

INSTITUTE 4676 Admiralty Way/Marina del Rey/California 90292-6695

84 05 29 00 9
, L-7-%..

Unclassified
SECURITY CLASSIFICATION OF Tm.IS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
___________________________________ BEFORE COMPLETING FORM

I REPORT NUMBER 12, GOVT ACCESSION No. 3 RECIPIENT'S CATALOG NUMBER

ISI/RS-84-129 ______ _____

4 TITLE (and Subtitle) 5 TYPE OF REPORT a PERIOD COVERED

Implementation of lnterlisp on the VAXRearhept
6. PERFORMING ORG. REPORT NUMBER

7. AU TmOR(s) S CONTRACT OR GRANT NUMBER'.)

PRaymond L. Bates, David Dyer, and Johannes A. G. M. Koomen MDA903 81 C 0335

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK

USC/Information Sciences Institute AE OKUI UBR

C' 4676 Admiralty Way
Marina del Rey, CA 90292 -6695

11I CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency May 1984

140 WisnBvd. -13. NUMBER OF PAGES

*Arlington, VA 22209 19
14 MONITORING AGENCY NAME & ADORESS/it differentI from, Controlling Office) I5 SECURITY CLASS tot tnto report)

Unclassified C

ISa. DECLASSIFICATION DOWNGRADING
SCHEDULE

- 16 DISTRIBUTION STATEMENT (of this Reporlj C

This document is approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It different from, Report)

18 SUPPLEMENTARY NOTES

Reprinted, with permission. from Conference Record of the 7982 Symposium on LISP and Functional
Programming, Pittsburgh. Pennsylvania, August 1982.

19. KEY WORDS (Continue on reverse side It necesary antd identify by block number)

Implementations. lntt.-rlisp, LISP, UNIX, VAX

* 20 ABSTRACT (Continue on reveree side it necessary and Identify by block number)

This paper presents some of the issues involved in implementing lnterlisp on a VAX computer with the
goal of producing a version that runs under UNIX. specifically Berkeley VM/UNIX. Some of the goals
of this implementation were to be compatible with and functionally equivalent to lnterlisp-10 and to
serve as a basis for future lnterlisp implementations on other mainframe computers.

DD I JAN",73 1473 EIINOINO61SOBLTE Unclassified
StriO-fl146A01SECURITY CLASSIFICATION OF T141S PAGE (Whomn Dale Entered)

IS1 Reprint Series

ISI/RS-84-129

May 1984

r
University j_ _

of Southern

Raymond L. Bates California

David Dyer

Johannes A. G. M. Koomen
.....I:: : i :::: :: :: :I mpIe me nt at i on o f In t e rIis p

on the VAX

Reprinted from Conference Record of the 1982
*'. Symposium on LISP and Functional Programming,

Pittsburgh, Pennsylvania, August 1982.

-. ..

4 i,* I -

INFORMATION
SCIENCES 213/822-1511

INSTITUTEV 4676 Admiralty Way/Afarina del Rey/Caltfornia 90292-6695

This research was supported by the Defense Advanced Research Projects Agency under Contract No. MDA903 81 C 0335 The views and
conclusions contained in this report are the author's and should not be interpreted as representing the official opinion or policy of DARPA,
the U.S. Government, or any person or agency connected with them.

A-7-

**' :.' . q ... ¢ ' -, ' - - .3 , -. ,,,,..,..-'- ; t., ' .,¢',, ,-' .,€ =, .. '. .. "..., -. .. ,. .:.

:. -

i •i

ISI Reprint Series

This report is one in a series of reprints of articles and papers written by ISI
research staff and published in professional journals and conference
proceedings. For a complete list of ISI reports, write to

Document Distribution
USC/Information Sciences Institute

-, 4676 Admiralty Way
Marina del Rey, CA 90292-6695

S--. USA

4-L

4%

'4."

r/,

i.. ..

a '•'

.4.

Implementation of Interlisp on the VAX t

aymond L. Bates, David Dyer and Johannes A. G. M. Koomentt
-ft.

Introduction
This paper presents some of the issues involved in implementing Interlisp [19] on a VAX

computer [24] with the goal of producing a version that runs under UNIX [17], specifically Berkeley

VM/UNIX. This implementation has the following goals:

- To be compatible with and functionally equivalent to Interlisp-10.

To serve as a basis for future Interlisp implementations on other mainframe computers.
This goal requires that the implementation to be portable.

* To support a large virtual address space.

To achieve a reasonable speed.

The implemention draws directly from three sources, lnterlisp-10[19], Interlisp-D[5], and

Multilisp [12]. Interlisp-10, the progenitor of all Interlisps, ,ins on the PDP.10 under the TENEX [2]

and TOPS-20 operating systems. Interlisp-D, developed at Xerox Palo Alto Research Center, runs on

personal computers also developed at PARC. Multilisp, developed at the University of British Colum-

bia, is a portable interpreter containing a kernel of Interlisp, written in Pascal [9] and running on the

IBM Series/370 and the VAX. The Interlisp.VAX implementation relies heavily on these implemen.

tations. In turn, Interlisp-D and Multilisp were developed from The /nterlisp Virtual Machine

Specification [15] by J Moore (subsequently referred to as the VM specification), which discusses

what is needed to implement an Interlisp by describing an Interlisp Virtual Machine from the

implementors' point of view. Approximately six man-years of effort have been spent exclusively in

developing Interlisp-VAX, plus the benefit of many years of development for the previous Interlisp

implementations.

tt~

0 1982, Association for Computing Machinery, Inc. Reprinted by permission from Conference Record of the 1982
Symposium on LISP and Functional Programming, Pittsburgh, Pennsylvania, August 1982.

ttCurrent affiliation: Department of Computer Science, University of Rochester, Rochester, NY 14627

2

History of the Project
A few years ago the research community ceased to consider Interlisp-1 a useful research vehicle

because of its limited address space. A search began to provide a new LISP environment powerful

enough to support current and future research. There was considerable discussion of abandoning

the Interlisp dialect entirely in favor of Maclisp [14], LISP Machine LISP [25], NIL [26], or Common

LISP. The choice of LISP dialect would to some extent dictate the choice of hardware. Potentially

attractive hardware were the CADR [11] (MIT LISP Machines) and Xerox 1100 Scientific Information

* %.-. Processors (Interlisp-D machines, also known as Dolphins or DO's). Both are personal LISP

machines. Also considered were machines not specifically oriented toward LISP. They included the

PERO and the PRIME (both personal machines), as well as the M68000-based personal machines,

which were promised to be available "soon." The high cost and unpredictable future of each of these

4 personal machines were strong influences against their selection. The new feature of extended

addressing on TOPS-20 was also considered and rejected as the basis for a new LISP implementation

on the PDP-10.

The DEC VAX computer was selected as the machine to host the new Interlisp for several reasons.

It has become an extremely popular machine, especially for universities and research facilities. Al-

though each of the alternative hardwares has acquired a user community, none approaches the

popularity of the VAX. The VAX family of computers promises to have a long life, to be widely

available, to be extensively supported, and to have a wide variety of price and performance ranges. It

is anticipated that the family will be extended both up in performance and down in price. All of these

characteristics enhance the usefulness and longevity of lnterlisp-VAX compared to the alternatives.

In June 1980 serious work began on the development and implementation of an Interlisp compatible

with the VAX series of computers. Initially, most of the effort was directed at the planning and detailed

design of the implementation of various critical parts. By the end of the year, the writing of code

specific to Interlisp-VAX was begun. Using the Multilisp system as a template, a new Interlisp kernel

was developed in the language C [10]. In parallel, the existing Interlisp compiler was modified to

produce VAX code. Both of these tasks were essentially completed by August 1981. Since the

beginning of 1981, various parts of the existing Interlisp code have been adapted or rewritten to fit the

VAX-UNIX mold. Currently the project is substantially completed. The first release of the Interlisp.VAX

system was made publicly available in March 1982.

.'

_ ., € -. . ..a
'= "" " ";''"."-" ' '".', ". .;," !, " " ' "-" • .1

_-4

3j

Basic Design Decisions
After the initial choices of a target machine and the dialect of LISP, a multitude of choices remained.

Foremost were the overall implementation strategy and the implementation language for that part of

the system (if any) that was not to be written in Interlisp. Although most of Interlisp is written in itself,
another language is traditionally used for a small kernel of code to implement the primitives that are

difficult or impossible to implement in LISP.

The resulting implementation follows traditional LISP implementation techniques more closely than

-'.LN do some other new LISP implementations. For example, it does not use CDR coding, or any custom
microcode; nor does it require any other special hardware. To some extent, this reflects our design
goal that our implementation be portable to other hardware and that it run on VAXes not dedicated to

or specially modified for Interlisp. It was also important to minimize the uncertainty that the resulting
system would run and be usable. Unproven or experimental techniques were never seriously con-

sidered.

,. Implementation Language

V A LISP implementation written entirely in itself has proven to be viable and was considered for
Interlisp-VAX. Ultimately this approach was rejected because of the anticipated difficulty of

bootstrapping, and the uncertainty that implies, and because the lowest level LISP code in such a

A system would likely be very machine dependent, and so not an advantage over a conventional im-
plementation language.

The implementation languages considered were C, Pascal, BLISS [1], and assembly language. The
importance of the choice of implementation language varies inversely with the amount of code to be

written in LISP. The three primary considerations in the choice were cost in programming time,

efficiency of resulting object code, and portability to other machines.

An implementation written entirely in assembly language, such as Interlisp-10, was eliminated be-

cause of its lack of portability and its prohibitive cost in programming time. It was decided that writing% -... .,,
a small amount of the most critical code in machine language would gain most of the efficiency
advantages of an implementation written entirely in machine language at a fraction of Its cost. This

has proven to be the case. Measurements show that the portion of time spent in code written in C is
~small. ,",

BLISS would have been a good choice for the VAX, but it is not available on non-DEC machines and
is not yet available on UNIX. It did not appear likely that BLISS would be available on non-DECIa.

) •.

4

Pascal and C are both suitable languages from the viewpoints of portability and availability. Since

UNIX was chosen as the host operating system for our VAX, C was the clear favorite. But Pascal also

had its advantages, the primary one being the availability of the Multilisp program, which met major -

portions of the Interlisp VM specification. Considering that the language would be used as an im-

plementation language, Pascal was clearly inferior for the project's purposes. Pascal was not

originally intended as an implementation language. It does not easily allow the kinds of data

manipulations necessary for efficiency and ease of expression. C ultimately was chosen over Pascal O

because of its position as the universal implementation language for UNIX and the growing popularity

of UNIX as an operating system.

Division of Labor Among Languages S

The amount of code to be written in Interlisp versus that to be written in C or assembly language

was another factor. As much code as practical was written in Interlisp without unduly complicating

the process of bootstrapping and debugging, or making the LISP code unduly complex or machine

dependent. The ratio between Interlisp and C code for Interlisp-VAX is similar to the ratio between

Interlisp and machine language in Interlisp-1O, except that the services provided by TENEX or
TOPS-20 in Interlisp-1 0 are mostly written in LISP. Interlisp-VAX relies greatly on Interlisp-D, because

Interlisp-D implements Interlisp almost completely in Interlisp (with a minute kernel written in

BCPL [16] and microcode). The availability of the actual Interlisp code to implement TENEX or

TOPS-20 compatibility was important in achieving a successful implementation.

The Interlisp-VAX interface to the UNIX operating system is simple. Little is required beyond the

basic attributes of reading and writing data, delivering interrupts from terminal input, and providing

address space. Except for file names and "operating system compatibility," problems should be

minor for future implementations based on Interlisp-VAX. The Interlisp model of a file name coincides
~with a TENEX or TOPS-20 file name, thus it is not compatible with most other operating systems.

Much low-level code is required to map TENEX's or TOPS-20's complex implementation of version

numbers and long file names, which Interlisp implicitly depends upon, into UNIX's short, unadorned

file names. Our original implementation has since been reworked to encompass VMS's somewhat

different file names, and will have to be modified again later if UNIX file names are changed. File

names' dependency has also proven to be one of the more annoying glitches to users, who frequently

have "canned" directory names from TENEX or TOPS-20 that cannot be mapped directly into UNIX

directory structures.

6,.. "

'.l

o.,

5

In addition to the low-level operating system interface, the Interlisp-VAX kernel contains basic

memory management, spaghetti stack primitives [3], a garbage collector, and the interpreter. LISP

code was written or acquired to provide arrays and hash arrays, datatypes, all terminal support above
.5.-

the level of the raw get character and the raw put character, file I/O above the level of the read block

and the write block, file name recognition, and all of LISP's READ and PRINT operations.

5'-

For successful division of labor between LISP and C, two slightly unusual features were essential.

First, the compiler for the VAX was developed and debugged using Interlisp-1 0. Second, the C kernel

contains a throwaway simple version of LISP's READ and PRINT, which simplified the debugging and

bootstrapping processes.

Almost all of the Interlisp system is required for the compiler to work. Although the compiler was

one of the last components of Interlisp-VAX to be brought up on the VAX, compiled LISP code was * L

used almost from the beginning. Since the Interlisp system uses advanced language features of

Interlisp (CLISP, Records, etc.), it cannot be interpreted or compiled in anything less than a complete

Interlisp system. Therefore, a cross compiler for a new machine is necessary. Interlisp.D and

Interlisp-VAX were implemented using cross compilers. Multilisp developed from the VM specification

but, without the support of a cross compiler, has not bridged the functionality gap necessary to load

the Interlisp environment.

The process of bootstrapping was accelerated by having a primitive READ, EVAL, and PRINT loop

built into the kernel. Initially the usual C debuggers were used to start the READ, EVAL, and PRINT

working. Later the VM was used to debug itself.

The current lnterlisp-VAX kernel contains approximately 1000 lines of assembly language devoted p

to function linkage, free variable lookup, and low level interrupt handling, as well as a little over 11,000 ,p

lines of C code providing basic memory management, spaghetti stack primitives, a garbage collector,

the interpreter and a low-level operating system interface. Of the approximately 83000 lines of Inter-

lisp code in this implementation, about 16000 were written explicitly for this implementation. About

:.% 9500 are shared with Interlisp-D, and about 57500 are shared with the other Interlisp implementations.

%A 6!. 2..2

55..O5

%,5,5
5-::

%-

6

Overall Memory Management

Memory Management Decisions

InterlispVAX uses a BBOP (big bag of pages) memory management scheme, where the "page" is

- 64K bytes. This scheme was selected over a tagged object architecture or a tagged pointer architec-

ture, because the VAX is not a tagged architecture machine. It would not use tagged objects or

pointers efficiently. The greatest advantages of a BBOP memory management schemes are its

simplicity, efficient use of space and efficiency of data management. The architecture of all existing

existing machines allows blocks of storage to be allocated efficiently within the block of space. No

special hardware is required.

Similar arguments influenced choosing to segment addresses by pages rather than to partition the

address space as a whole. Chunks of address space are easily found, whereas the overall shape and

texture of the address space varies widely among machines. Likewise, a segmentation appropriate

for a 4-megabyte system would not be appropriate for a 40-megabyte system, and we wanted

lnterlisp-VAX to scale up smoothly. For the VAX, with a 32-bit address space and a 32-bit pointer, 64K

bytes was the logical size, since 64K bytes is the square root of the address space. Two of these

..* . "sectors" are devoted to a table of data type numbers that serve as indices to a third sector contain-

ing multiword descriptors of each data type. These three sectors are the only fixed-memory alloca-

tions in the system. All other storage for user-defined and predefined data types is allocated from the

operating system pool.

All objects in a 64K block of data are of a single type. For areas containing variable length objects,

either those objects will contain no pointers themselves (e.g., PNAMES) or the pointer is to a

sequence descriptor that describes the object. The basic datatypes definition mechanisms allow for

all combinations of datatypes -- fixed length, variable length, those containing pointers, and those not • -

containing pointers.

a.%

V. Garbage Collection

The Interlisp-VAX kernel contains a nonrecursive, copying garbage collector based on Cheney's

Algorithm [6]. The practicality of this scheme for very large address space remains to be proven.

Garbage collection, although infrequent, is expensive. For Interlisp-VAX a compacting collector

achieves locality of reference in the expected large virtual address space. Although copying is the

simplest and most efficient method of compacting, its main disadvantage is the requirement that the

operating system, during collection, provide twice as much working storage as is being used.

a7-:

-o

a.. .
-~-~ ~ ~ 7k!. !.* ft

Another disadvantage of the scheme is that it is necessary to be certain of what is and what is not a

pointer. In a traditional mark and sweep collection, any questionable objects can be treated as

pointers, and at worst, some space will not be collected. In a copying collector, all pointers and only

pointers must be moved. Because of this hazard lnterlisp-VAX does not contain a "VAG" operator,

which converts a random integer into a pointer.

lnterlisp-VAX uses approximately 4-megabytes of virtual address space at startup, which compares

to UNIX's default restriction of 6-megabytes per process. The 6-megabyte limit is rarely reached

during a normal day's session. Only when a massive computation is in progress is collection neces-

sary; and then it is extremely slow, taking several minutes elapsed time (though only a few seconds

cpu time!). If the system limit is increased to 11-megabytes, those same compilat" run to comple-

tion without garbage collection. We believe that the lack of garbage collectior)es not affect the

paging rate significantly.

Our experience has shown that the garbage collector is not an important pa ., the overall ef-

ficiency of the implementation, provided one follows Jon L White's dictum: "Don't do it" [27]. The

best overall performance tradeoff is to increase the amount of virtual address space in use. Garbage

collect only as a result of limitations in the operating system or hardware architecture.

Representation Decisions

Stack Representation

The choice of representation for LISP data structures is crucial to the ultimate efficiency of a LISP
implementation. The greatest compromises in this area were made in favor of efficiency at the

expense of portability. As few different structures as practical were used in order to keep the number

of different access methods to a minimum.

The stack representation is the most complex, the most tuned to the VAX, and the most vital to

efficient operation. The stack representation of Interlisp-VAX uses the VAX's native instructions

CALLS to construct stack frames and RET to destroy them. The auxiliary mechanisms to map the

VAX's stack into the more complex spaghetti stack expected by Interlisp are the most complex code

in the kernel. "Only" 10 to 15 percent of the time is spent in function application and stack manage-

ment code. The details of the stack management are peculiar to the VAX and will need to be

substantially redone to achieve efficiency in another implementation. The implementors believe the

choice of efficiency above all else for stack representation is justified.

°'p0

-'p :'I5;,.-, '',''''','' .: '-'.',:,'---- . -. . -- ,'.. : ' . .. -. . - .. .' . - . -- - . '. . . -. -. ' . .. -- ,


~~~~~~~~~~~~~~~~~~~~~~~~~~. . . .,... .... ...... .. _.-...,......-. .,..... .... .. .,. . , :Oi. ,-.........,

Binding Scheme

Interlisp-10 has employed two different binding schemes for variables. Currently it uses a

shallow-binding scheme. Prior to April 1976 it used a deep-binding scheme. In both shallow binding

and deep bindings, associated with each variable there is a special cell (the value cell), which

normally contains the the top level value of the variable. Using deep binding, when a variable is

rebound, a name/new-value pair is stored on the stack. To obtain or modify the current value of a

variable, the stack must be searched to determine whether or not the variable was rebound. This is

potentially time consuming especially if the stack is large. At the time of unbinding the variable or

spaghetti context switch, no special actions are required. Under a shallow-bound system, the current

value of a variable is always stored in the value cell. When a variable is rebound, a name/old-value

pair is stored on the stack and its new value is placed in the value cell. At the time of unbinding, the

old value must be restored. During a spaghetti context switch between two environments the values

of all variables not common to both environments have to be restored. Shallow binding eventually

was chosen over deep binding to improve performance by eliminating the stack search required in

deep binding; however, the only major improvement appears to be an increase in the speed of the

Interlisp-1O Interpreter [21].

We deliberately chose deep over shallow binding in Interlisp-VAX. There are substantial tradeoffs

between deep and shallow binding for spaghetti stacks (multiple stack groups). With Interlsp-1O, the

expense of shallow bindings in spaghetti manipulations results in spaghetti stacks that are perceived

as too slow for use in many applications.

The basic performance tradeoffs are these: For shallow binding, the basic bind/unbind operations

a.-, are marginally more expensive; locality of reference is less; "free variable" lookup is free; and

spaghetti stack environment switching is expensive, because it involves rebinding all variables on

both threads back to a common root. For deep binding, free variable lookup is expensive, but

spaghetti operations are cheap. For a system without spaghetti, the performance tradeoff is clearly in S

favor of shallow binding. For a system that actually uses spaghetti the tradeoff is less clear.

The choice of deep over shallow binding has proven to be even more critical than at first realized.
The original deep-binding scheme was straightforward; free variable lookup occurred at every refer- '

ence. Preliminary timings showed that 15 to 40 percent of all time was spent in the free variable

lookup routine and that the interpreter was slow. A simple caching scheme to reduce the frequency of " "
scans has been implemented and more elaborate schemes are under consideration. At present the

overhead to support deep binding is typically the largest single item in the performance of average -O

programs. In retrospect, this one choice is the most obviously questionable we have made. We at

*6;i
! d.

' €



9

least should have considered performance optimizations for deep binding from the beginning, and

possibly should have chosen shallow binding.

Integer Representation

The representation of integers is one of the more unusual aspects of lnterlisp-VAX. Unlike most

LISPs implemented on machines without tagged architectures, Interlisp-VAX has no notion of integer

number boxes. The VAX architecture has a 32-bit address space, where the high-order bit selects

system space or user space. Since user programs cannot have addresses in the range 2t31 to 2t32,

these addresses are used to provide 2t31 immediate integers. The loss of 1 bit of integer precision is

not significant to Interlisp applications, which typically have not used much arithmetic. The gain is

considerable as all integer arithmetic is fast.

,Other Objects

All other objects are organized by two parameters. All are treated similarly by memory management

and garbage collection. They have similar data fetch and store procedures. Our preference here was

to keep the representation as simple as possible and still retain reasonable implementation efficiency.

Two methods allow a few simple data primitives to describe all possible operations on lnterlisp-VAX's

data.

All objects are described by a single, separate type descriptor, which includes the length of the

objects and the number of pointers they contain. The pointers are always allocated at the beginning

of the object. All user-defined types and all basic data types except arrays and strings are in this

group.

All variable-length objects are described by a sequence descriptor. These include arrays, code

arrays, and strings. There is only one type of sequence descriptor. All data access to objects
described by sequence descriptors takes exactly the same form (e.g., fetching the nth character of a

string involves exactly the same arithmetic as fetching the nth item of an array).

.- °

,....-

.-.-
S.



10

Current Status
A compatible Interlisp running on th, WAX is presently available. Several large Interlisp systems

have been transported onto the VAX with little difficulty. Some of the systems now running on the P
VAX are Affirm [8, 22] (a program verification system), AP3 (an Al programming language),

Hearsay-Ill [7] (a domain-independent framework for building knowledge-based expert systems),

Consul [4] (a knowledge-based user interface to interactive tools) and KL-One [131 (a language for

representing knowledge as a semantic network). The current speed is about one-third of a DEC-KL. '

The system is being tuned to improve the performance. Our goal is to reach the speed of ap-

proximately one-half of a DEC-KL.

The Difficulties of Implementing Interlisp
Implementing Interlisp is a more difficult task than implementing "any LISP," as the task is strongly

-' constrained. Generally speaking, it is not acceptable to heavily modify Interlisp programs in order to
make them run on another machine. Although it is not difficult to create a LISP that resembles

Interlisp, the result is not Interlisp and will not support the multitude of code already written in Inter-

lisp. Particularly, the Interlisp environment [20, 18] is essential as part of a recognizable Interlisp

system, and the environment is dependent on all the quirks and hidden features of the original
i I nterlisp. 10.

P
The VM specification is an invaluable aid in producing a new Interlisp. However, its relatively small

size (126 pages) makes the task of implementing Interlisp seem deceptively easy. If only the functions

of the VM were implemented, the result would not be lnterlisp. There are many small but important

features that are not mentioned in the VM specification, the interlisp manual, nor anywhere else.
"4- ofteV4eeipemnetersl wudntb nelip-hr r ay ml u motn

Many nonobvious constraints remain to be discovered by a potential implementor. Subtle inter-

i'.4 actions of seemingly straightforward features must be anticipated or they will be discovered as bugs.

To achieve reasonable efficiency with Interlisp, conceptually simple data structures can require .

complex representations. For example, great care has been taken to use the correct VAX instruction

necessary for a function call (CALLS instruction) in order to attain an acceptable speed. If it were not

necessary to be concerned with the spaghetti stack for the convenience of the VAX, the task would be

easier, but again Interlisp would not result. As complexity increases, planning, implementing, debug-

ging, and maintenance become more difficult.
4,, ,

LQP.
-"- .. , , .- " ,p ; . _ . ' .... . . ,.:., . ... .. . . ., . ", / ,', , a,,. ' ''. ' ,.. , . ' '



J-,a 11 _

.... , Conversion Problems Encountered by Users
Users face three classes of problems in converting large Interlisp programs to run on the VAX (most

programs now originate from Interlisp-1O). The first class of problems arises because Interlisp-1O is a

shallow-bound system while lnterlisp-VAX is a deep-bound system. Programs running on a deep-

. *bound system must be more selective with compiler declarations than programs running on a

shallow-bound system (otherwise the programs might not run). Shallow-bound systems are less

restrictive in terms of compiler declarations and coding style. This difference creates problems be-

cause certain compiler declarations that are possible in a shallow-bound system will not work in a.4..

deep-bound system. Specifically, in a deep-bound system the variables bounded by RESETVARS

must be GLOBALVAR, and the variables bounded by PROG cannot be GLOBALVAR. For example,

the following program will compile only in a shallow-bound system: P
(FOO

'" [LAMBDA (X)
(DECLARE: (SPECVARS Y)

(GLOBALVARS HELPFLG))
(PROG (HELPFLG Y I)

.(...-]

To make the program compile in a deep-bound system it must be re-coded to:
(FOO

[LAMBDA (X)
(DECLARE: (SPECVARS Y)

(GLOBALVARS HELPFLG))
(RESETVARS (HELPFLG)

(RETURN (PROG (Y I)~(... ])

The second class of problems arises because the program is running under a different operating

system with different restrictions. Although it is obvious that any direct call to a JSYS (a TENEX or

TOPS-20 operating system call) must be removed, other problems can arise. The greatest limitation

of UNIX is that file names are restricted to fourteen characters and have no version numbers.

The third problem comes closest to being the Achilles' heel of the implementation, and illustrates

the importance of considering all of the implications of representation decisions. Because of the

-* 2. representation of integers in Interlisp-VAX, taking CAR of a number generates a machine check. A

surprising number of programs do this without the programmer being aware of the action, canoni-

cally:
I (AND (EQ (CAR X) (QUOTE QUOTE) -- )

where X has not been guaranteed to be a LISTP. In the previous implementations, CAR and CDR of

numbers and other non-lists were harmless, if meaningless, operations.

f~r, * *6



12

Remaining Tasks
Interlisp-VAX achieves compatibility with Interlisp-10 and Interlisp-D. However, continuous effort is

necessary to maintain compatibility with still-evolving Interlisp-D (currently Interlisp-10 is very stable

• "and is expected to remain so). A few functions remain to be coded, and of course there are still bugs

to remove. A major concern is to increase the speed of Interlisp-VAX. Currently the compiler is being

changed to produce better code for the VAX (by using peephole optimization and better register

allocation, and producing more compact code). A VMS [23] version using EUNICE should be avail-

able by the time this paper is published.

We are considering more optimizations of free variable lookup, and may eventually experiment with

shallow binding. Some minor implementation choices may have unexpectedly large impact on the

total performance, for example, the fact that atom PNAMEs are really strings, including a superfluous

string header, so inspecting the PNAME involves touching three different areas of memory. There is

much more "open coding" to be done. Currently, only the primitive predicates and some integer

arithmetic are compiled in line, with the result that interlispVAX code still is top heavy with function

calls. Finally, there is much more to be done in cooperation with improvements in UNIX to reduce the

size of SYSOUT and increase the effective sharing of active pages among copies from zero to some

reasonable level.

Conclusions
The implementation of Interlisp on the VAX is a technical success, and should prove to be a popular

" and useful tool within the combined VAX and Interlisp communities. Among the most important

contributing elements to our success were the reliance on proven software technology, careful plan-

ning in advance of coding, the availability of reliable specifications for what was to be produced, and

especially the ability to share large masses of code with other Interlisp implementations.

Acknowledgments
This project would have been immeasurably more difficult and less likely to succeed without the

cooperation of Xerox Corporation: historical contributions to Interlisp-10, support for the writing of

- the Interlisp Virtual Machine Specification, sharing of code developed for Interlisp-D, and the per-

sonal assistance and advice of the staff of the Xerox Palo Alto Research Center.

The following members of the ISl staff have contributed to the implementation of the lnterlisp-VAX:

Dan Lynch, Bob Balzer, Andrea Ignatowski, Steve Saunders, and Don Voreck.

Sa

? "S2'

- -* .'~. * S, :'r---"



- -~ . .- - .-..- .- . .-.

13

References

1. BLISS-10 Programmer's Reference Manual, Digital Equipment Corporation, Maynard, Mass.,
1974.

' . 2. Bobrow, D. G., J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, "TENEX, a paged time sharing
system for the PDP-10," Communications of the ACM 15, (3), March 1972,135-143.

3. Bobrow, D. G., and B. Wegbreit, "A model and stack implementation for multiple environments,"

Communications of the ACM 16, (10), October 1973, 591-603.

4. Brachman, R., A Structural Paradigm for Representing Knowledge, Bolt, Beranek, and Newman,

Inc., Technical Report, 1978.

5. Burton, R. R., et al., "Overview and status of DoradoLISP," in Proceedings of the 1980 LISP
Conference, pp. 243.247, Stanford, Calif., August 1980.

6. Cheney, C. J., "A Non-recursive list compacting algorithm," Communications of the ACM 13,
(11), November 1970, 677-678.

7. Erman, L., P. London, and S. Fickas, "The design and an example use of Hearsay-Ill," in
Proceedings of the Seventh International Joint Conference on Artificial Intelligence, pp. 409-415,
Vancouver, B.C., August 1981.

9.9  8. Gerhart, S. L., et al., "An overview of Affirm: A specification and verification system," in
Proceedings IFIP 80, pp. 343-348, Australia, October 1980.

9. Jensen, K., and N. Wirth, Pascal User Manual and Report, Springer-Verlag, New York, 1975.

10. Kernighan, B. W., and D. M. Richie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, N. J., 1978.

11. Knight, T., D. Moon, J. Holloway, and G. Steele, CADR, Massachusetts Institute of Technology,
Technical Report 528, June 1979.

12. Koomen, J. A.G.M., The Interlisp Virtual Machine: A Study of its Design and its Implementation
as Multilisp, Master's thesis, University of British Columbia, 1980.

13. Mark, W., "Representation and inference in the Consul System," in Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, pp. 375-381, Vancouver, B.C., August

A= 1981.

14 Moon, D. A., Maclisp Reference Manual, Massachusetts Institute of Technology, Laboratory for
Computer Science, Technical Report, March 1974.

15. Moore, J S., The Interlisp Virtual Machine Specification, Xerox Palo Alto Research Center, Tech-
nical Report CSL 76-5, March 1979.

16. Richards, M., and C. Whitby-Strevens, BCPL - The Language and its Compiler, Cambridge
University Press, New York, 1979.

17. Ritchie, D. M., and K. Tompson, "The UNIX time-sharing system," Communications of the
ACM 17, (7), July 1974, 365-375.

18. Sandewall, E., "Programming in an interactive environment: The LISP experience," Computing
Surveys 10, (1), March 1978, 35-71.

S . , -.. - , - . ,. .- , - ,. ... . .. - ... .-.. .-..-... ,..... .. .- ... - . - . -, - .



14

19. Teitelman, W., Interlisp Reference Manual, Palo Alto, Calif., 1978.

20. Teitelman, W., and L. Masinter, " The Interlisp programming environment," Computer 14, (4),
April 1981, 25-33.

21. Teitelman, W., Shallow bindings in Interlisp•10 (April 22, 1976). Note to Interlisp Users, Xerox
Memo.

22. Thompson, D. H., S. L. Gerhart, R. W. Erickson, S. Lee, and R. L. Bates (eds.), The Affirm
Reference Library, USC/Information Sciences Institute, 1981. (Five volumes: Reference Manual,
User's Guide, Type Library, Annotated Transcripts, and Collected Papers; 450 pages.)

23. VAX Software Handbook, Digital Equipment Corporation, 1980.

24. VAX Architecture Handbook, Digital Equipment Corporation, 1981.
25. Weinreb, D., and D. Moon, LISP Machine Manual, Massachusetts Institute of Technology, Artifi-

cial Intelligence Laboratory, Technical Report, January 1979.

26. White, J. L., "NIL - A perspective," in Macsyma Users' Conference Proceedings, June 1979.

27. White, J. L., "Address/memory management for a giganitic LISP environment or, GC considered
harmful," in Proceedings of the 1980 LISP Conference, pp. 119-127, Stanford, Calif., August
1980.

o-i

.4.-

.4,
VP6

°..

.4=

-, . ....'..V



-AwA

ri

f ,i 
IT

A 
'J

fj,~- iS. '

W PI

L r V


